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Abstract. Plateaux in the magnetization curves of the square-, triangular- and hexagonal-
lattice spin-1/2XXZ antiferromagnet are investigated. One finds a zero-magnetization plateau
(corresponding to a spin gap) on the square and hexagonal lattice with Ising-like anisotropies, and
a plateau with one-third of the saturation magnetization on the triangular lattice which survives a
small amount of easy-plane anisotropy. Here we start with transfer-matrix computations for the
Ising limit and continue with series in theXXZ anisotropy for plateau boundaries using the ground
states of the Ising limit. The main focus is then a numerical computation of the magnetization curves
with anisotropies in the vicinity of the isotropic situation. Finally, we discuss the universality class
associated with the asymptotic behaviour of the magnetization curve close to saturation, as observed
numerically in two and higher dimensions.

1. Introduction

The discovery of high-Tc superconductivity has revived interest in two-dimensional Heisenberg
antiferromagnets (for a review see [1]), since the CuO2 planes give rise to a good realization
of the S = 1/2 square-lattice antiferromagnet. Due to the large coupling constants of the
high-Tc materials, the main focus is on properties in zero or small external magnetic fields.
Nevertheless, it has also been progressively realized that antiferromagnets exhibit interesting
phenomena in strong external magnetic fields, namely plateaux in their magnetization curves
at certain fractions of the saturation value of the magnetization.

In one dimension, the appearance of plateaux in magnetization curves is by now rather
well understood in terms of a quantization condition on the magnetization that involves the
volume of a translationally invariant unit cell [2–8]. In fact, if the interaction inside finite
clusters of spins is large with respect to the other interactions, the appearance of plateaux is
governed by the volume of such a cluster irrespective of the dimension [8]. However, the
simplest two-dimensional systems have equal coupling constants, and then it is less clear what
determines the appearance of plateaux in magnetization curves. One well-known example of
such plateaux in two dimensions is a plateau at one-third of the saturation magnetization in
the triangular-lattice antiferromagnet. There have in fact been a number of theoretical studies
of the magnetization process of two-dimensional triangular antiferromagnets (see [9–15] for
a selection) which are at least to some extent motivated by the presence of this plateau or the
more general feature of frustration. The number of recent investigations of the magnetization
process of the square-lattice antiferromagnet [16–20] still seems to be smaller, and for the
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hexagonal lattice we are aware of just a single study of the Ising antiferromagnet in a magnetic
field [21].

The magnetization plateau of the triangular-lattice antiferromagnet can be observed exp-
erimentally in a variety of materials (see e.g. [22] for recent rather clear examples and [23]
for a review of experimental facts about triangular-lattice antiferromagnets). The present
investigation was in fact originally motivated by a magnetization experiment on the stacked
triangular-lattice antiferromagnet CsCuCl3 [24] which shows a plateau in the magnetization
curve at one-third of the saturation value if the field is applied perpendicular to thec-axis. In
many cases and in particular in CsCuCl3, the spin is carried by a Cu2+ ion, giving rise to a
spinS = 1/2. Furthermore, at least in CsCuCl3, anisotropy of the interaction is important.
This led us to considering a spin-1/2XXZ model and to investigating the effect of theXXZ
anisotropy1. The relevance of the results of the present paper for CsCuCl3 will be discussed
elsewhere [25].

The focus of the present work are general features, namely in which situations magnet-
ization plateaux arise in two dimensions and the universality class of the transition to saturation.
These questions will be investigated by computing the zero-temperature magnetization process
of theS = 1/2XXZmodel on the aforementioned three lattice types, i.e. on a square, triangular
and hexagonal lattice. This problem is described by the following Hamiltonian:

H = J
∑
〈Ex,Ey〉
{1SzExSzEy + 1

2(S
+
Ex S
−
Ey + S−Ex S

+
Ey )} − h

∑
Ex
SzEx (1.1)

where theESEx are spin-1/2 operators acting atEx andh is a dimensionless magnetic field. The
notation〈Ex, Ey〉 denotes neighbouring pairs on a lattice whose total number of sites we denote by
V . The magnetization〈M〉 is given by the expectation value of the operatorM = (2/V )∑Ex SzEx
where the prefactor is chosen in order to normalize the saturation value to〈M〉 = ±1. The
magnetization operatorM commutes with the Hamiltonian (1.1). This leads to a technically
useful simplification since it allows one to relate all properties in a magnetic fieldh to those
ath = 0 with a suitably fixed magnetization〈M〉.

The plan of this paper is as follows. First, we compute magnetization curves for the Ising
model which is obtained from (1.1) by dropping theS+S− hopping-matrix elements. Exact
zero-temperature ground states are readily written down for all plateaux observed in this limit.
We then use this as an input to compute perturbation series in1−1 for the gap of single-spin
excitations above these ground states. Even though the boundaries of plateaux are in general
determined by multi-spin excitations, the series for the single-spin excitations yield a guide
in which region the plateaux persist for1 < ∞. In addition to such a disappearance of
plateaux existing in the Ising limit, further plateaux might open in other regions of1. This
and the intrinsic limitations of a perturbative approach necessitate a direct computation of the
magnetization process of the full quantum Hamiltonian (1.1), in particular in the region where
1 is of order unity. The bulk of the paper is therefore devoted to a numerical investigation
of (1.1) on all three lattice types which is much in the spirit of classical work on single
Heisenberg chains [26, 27]. Finally, we discuss the universality class associated with the
asymptotic behaviour of the magnetization curve close to saturation, i.e. for〈M〉 → 1.

2. The Ising antiferromagnet

The simplest case where one can observe magnetization plateaux in two dimensions is that of
the Ising antiferromagnet. The latter can be obtained from (1.1) by taking the limit1→∞
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and rescalingJ → J/1. This yields the energy function

E({sEx}) = J

4

∑
〈Ex,Ey〉

sExsEy − h
2

∑
Ex
sEx (2.1)

where thesEx are now Ising variables withsEx = ±1. Note that here we use unusual conventions
for J andh in order to simplify making contact with theXXZ Hamiltonian later.

While in the bulk of the paper we restrict consideration to zero temperature, here it is
actually useful to work at finite inverse temperatureβ in order to permit application of the
transfer-matrix method (see e.g. [28]). The magnetization is then given by

〈M〉 =
(∑
{sEx }

sEye−βE({sEx })
)/(∑

{sEx }
e−βE({sEx })

)
. (2.2)

Note that due to thermal fluctuations,M is no longer a conserved quantity and therefore one
cannot drop the expectation values. Working with expectation values would also be mandatory
for an anisotropy axis which does not coincide with the field direction, but this is not considered
in the present paper.

In principle, one could directly write down zero-temperature ground states of (2.1) and
compute the values ofh where one of them becomes preferred to others. Actually, a complete
set of ground states is known since the two-dimensional Ising model in the presence of
an external magnetic field was already studied some time ago on the square lattice (see
e.g. [29]), the triangular lattice (see e.g. [30]) and somewhat more recently on the hexagonal
lattice [21].

However, since we later wish to build on the results for this limit, we believe that it is still
useful to summarize the results in a uniform framework. We therefore evaluate (2.2) on a strip
using the transfer-matrix method [28], where we employ periodic boundary conditions along
the short direction of the strip and open ones in the long one. The siteEy in (2.2) is put at the
centre of the strip.

Figure 1 shows magnetization curves obtained in this manner on a square, triangular and
hexagonal lattice. The strip for figure 1 was in each case chosen to be 1000 sites long and
18 sites wide. A computation with the same length but half the width (i.e. ten sites for the
square and hexagonal lattice, but nine for the triangular one) leads to values for〈M〉which are
extremely close to the ones shown. In fact, the differences are numerically undetectable except

a)

0

1/3

2/3

1

0 1 2 3 0 1 2 3 4 0 1 2

<M>

h/J

b) c)

Figure 1. Magnetization curves of an Ising antiferromagnet on a 18×1000 (a) square, (b) triangular
and (c) hexagonal lattice. The curves are forJβ = ∞ (full), Jβ = 40 (long dashes) andJβ = 8
(short dashes).



4700 A Honecker

in the vicinity of the zero-temperature critical fields†, but the difference with respect to the
results shown in figure 1 never exceeds 10−2. We may therefore expect that the magnetization
curves in figure 1 are basically indistinguishable from those of the thermodynamic limit.
The smallness of finite-size effects will be a justification for using small system sizes later
in the analysis of theXXZ antiferromagnet, although then finite-size corrections should be
considered.

The interpretation of figure 1 is as follows. Both the square and hexagonal lattices are
bipartite lattices. Thus, their zero-temperature ground state at sufficiently small fields is given
by all spins pointing up on one sublattice and pointing down on the other. If the magnetic
field becomes large enough to make it favourable to align one further spin along the field, it
becomes so for all, and one has a sharp transition from the unmagnetized antiferromagnetic
ground state to a fully magnetized ferromagnetic one. The transition field is readily found by
computation to equalh = 2J or h = 3

2J for the square and hexagonal lattice, respectively (in
fact, it is easy to see that the transition to a fully magnetized state takes place ath = (z/2)J ,
wherez is the coordination number of the lattice).

The situation is slightly different for the triangular lattice where each plaquette is frustrated.
This lattice has three sublattices and energy is minimized at small fields by aligning all spins
in two of them along the field and the ones in the third in the opposite direction. Increasing the
field, it again becomes favourable for all of the latter spins simultaneously to align also along
the field. Thus one obtains a sharp first-order transition from a state with〈M〉 = 1/3 to the
fully magnetized one ath = 3J .

At non-zero temperature (β <∞), the corners of the magnetization plateaux are smoothed
out by thermal fluctuations and one sees no sharp transitions in the magnetization curve.
This simply means that〈M〉 is not a good quantity for detecting the thermodynamic phase
transitions which at finite temperature should replace the boundaries of the zero-temperature
magnetization plateaux. Since the smoothing effect of thermal fluctuations is actually not
desired when one studies magnetization plateaux, we will restrict consideration from now on
to zero temperature. It should, however, be noted that non-zero temperature would have effects
on theXXZ model that are qualitatively similar to those discussed above for the Ising model.

3. Expansions around the Ising limit

Following this illustrative study of the Ising antiferromagnet, we now turn to theXXZ model
(1.1). We use the ground states described in the previous section to expand the gap of single-
spin excitations in powers of1−1.

Since we wish to cover a variety of cases, it is convenient to use a simple but general method
for higher-order series expansions of a quantum mechanical system which is summarized
e.g. in section 3 of [31]. This should be sufficient to obtain an overview, but could certainly be
extended to higher orders using more sophisticated cluster expansions if this should turn out
to be desirable for concrete applications.

For thesquareand hexagonallattice there is just a plateau at〈M〉 = 0. The lowest
excitations are those where a single spin is flipped with respect to the antiferromagnetic ground
state. Due to the antiferromagnetic nature of the ground state, the first-order corrections to the
energies vanish and one finds a non-trivial dispersion only in second order in1−1. Since both
cases have been studied in detail in [32] (see also references therein) and [33], respectively,
we skip the details of the computation.

† A clear phase transition should be observable in thermodynamic quantities at the location of these maxima of the
finite-size effects.
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Analytical fourth-order expressions for the gap of these excitations withSz = 1 are given
by

m = J
(

21− 5

31
+

137

43213

)
+O(1−4) (3.1)

for thesquarelattice, and

m = J
(

3

2
1− 15

81
+

295

12813

)
+O(1−4) (3.2)

for thehexagonallattice. Numerical versions of the coefficients up to tenth order can be found
in table I of [32] and [33], respectively. Applying a naı̈ve ratio test to the higher orders given
in [32], one concludes that the series (3.1) can be expected to converge for1−2 . 1.

Now we proceed with the〈M〉 = 1/3 plateau of thetriangular lattice, a case which has
not been studied before. Recall that the triangular lattice has three sublattices and the lowest-
energy state with〈M〉 = 1/3 is obtained by aligning all spins on two sublattices up and the
ones on the third one down. The energy of this state ath = 0 is found to be

E1/3 = −JV
(
1

4
+

1

41
− 1

812
+

19

32013

)
+O(1−4). (3.3)

One possible excitation is obtained by flipping one further spin up. After a momentum decom-
position, one can use non-degenerate perturbation theory to find the dispersion relation

E+(kx, ky) = J
[
31 +

coskx + cosky − 3
4 − 2(coskx + cosky) cos(kx + ky)− cos(kx − ky)

1

]
+ O(1−2). (3.4)

From its minimum one obtains the gap forδSz = 1 excitations above the〈M〉 = 1/3 plateau:

E+(0, 0) = E+

(
2π

3
,

2π

3

)
= 3J1− 15J

41
+

75J

1612
+

783J

32013
+O(1−4). (3.5)

Now consider excitations withSz smaller by 1 than in the〈M〉 = 1/3 plateau state. There are
two possibilities for flipping a spin down with respect to the plateau state which are not related
by translational symmetry. In order to minimize the energy one has to take thedifferenceas a
linear combination of these two possibilities. Then one finds, in a way similar to (3.4),

E−(kx, ky) = −J
[

1

2
(coskx + cosky + cos(kx + ky))

+
1

1

(
7

8
+ cos(kx + ky)(coskx + cosky − coskx cosky)

− 3

4
(cos(kx + ky) + coskx + cosky) + coskx cosky

)]
+O(1−2). (3.6)

Its minimum determines the gap forδSz = −1 excitations above the〈M〉 = 1/3 plateau and
is given by

E−(0, 0) = −3J

2
− 5J

81
+

73J

3212
− 42 787J

11 52013
+O(1−4). (3.7)

These series will be compared to results of a numerical diagonalization in the following
sections.

We conclude this section by mentioning that the upper critical fieldhuc at which the
transition to a fully magnetized state takes place is straightforwardly computed exactly if it is
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determined by a single spin flip. One finds

huc =


dJ (1 + 1) (d-dimensional hypercubic lattice)

3J

(
1 +

1

2

)
(triangular lattice)

3

2
J (1 + 1) (hexagonal lattice).

(3.8)

For later use we have actually given here the value ofhuc for thed-dimensional hypercubic
lattice—the result for the square lattice is given by itsd = 2 special case. Note that the overall
numerical factor is proportional to the coordination numberz of the lattice. Furthermore, for
the bipartite lattices (hypercubic and hexagonal) one hashuc = (z/2)J (1 + 1).

4. Numerical diagonalization for the square lattice

In this and the following sections we report results of a numerical study of the magnetization
process forXXZ anisotropies around1 = 1. For a given1 and magnetization we have
numerically calculated the lowest eigenvalues of (1.1) withh = 0 in each momentum subspace
applying Lanczos-type methods to a finite-size system. The magnetic field at which a transition
between two states with different magnetization occurs is then calculated from the differences
of the corresponding ground-state energies. This type of approach has been used in the literature
for a long time (see e.g. [26, 27]) and below we therefore just present the consequences for
the magnetization curves and skip the details of these standard (but still CPU-time-intensive)
computations.

We choose to present our results in terms of ‘magnetic phase diagrams’. They show the
projection of the more conventional magnetization curves onto the axis of the magnetic field.
The values of〈M〉 are thus assigned to different regions of the plot. Since in this compact
representation we save one axis, we can display the variation of the magnetization curves as a
function of1 in a single figure.

First we discuss the square lattice. This case has also been studied with finite-system
diagonalizations at1 = 1 on a 4× 4 lattice [16] as well as more recently on larger
lattices [17]. At1 = 1 a second-order spin-wave investigation has also been performed [19].
For1 > 1 finite-system diagonalizations and quantum Monte Carlo simulations have been
carried out in [18]. The system is therefore well understood and provides a good check of our
method. Before presenting our results we recall from [18] that one finds a plateau with zero
magnetization for1 > 1 whose boundary corresponds to a first-order phase transition, i.e. in
the thermodynamic limit the magnetization jumps by a finite amount. This plateau disappears
(its width tends to zero) as1→ 1.

Figure 2 shows the magnetic phase diagram in the region with1 close to one on a square
lattice of size 4×6, i.e. with a volume of 24 spins. The thin full curves denote boundaries of the
magnetization plateaux〈M〉 = m/12 (m = 0, . . . ,12) which have to occur for this system size.
For other system sizes other values for〈M〉will also be possible. Therefore, regions in figure 2
where these curves are regularly spaced can be expected to correspond to smooth transitions in
the thermodynamic limit. Bearing this in mind, one can clearly see a plateau with magnetization
〈M〉 = 0 in the right-hand half of figure 2. For a moderately accurate determination of its
ending point we also use data on a 4×4 lattice. The linear approximation to the magnetization
curve with a vanishing gap suggests as a criterion 16m4×4(1c) = 24m4×6(1c). This yields
the estimate1c ≈ 0.87.

It should also be noted that for1 > 1.325 the neighbour of〈M〉 = 0 has magnetization
1/6, i.e. here it is favourable to flip two spins in the direction of the magnetic field rather than
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h/J

∆

<M> = 1

<M> = 11/12
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<M> = 3/4
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<M> = 1/2

<M> = 5/12
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<M> = 1/6

<M> = 1/12 <M> = 0

Figure 2. The magnetic phase diagram of the square-latticeXXZ antiferromagnet on a 4×6 lattice.
The thin full curves denote boundaries of areas with the values of the magnetization indicated in
the figure. The dashed curve is the spin gap (see the text). The bold full curve shows the extension
to tenth order [32] of the series (3.1) for the gap.

one. This fact reflects the first-order nature of the transition. In this region1 > 1.325, the
energy required for an excitation corresponding to a single flipped spin is shown by a dashed
curve (otherwise the energy for such an excitation is equal to the boundary of the〈M〉 = 0
plateau:hlc = m).

The extension to tenth order [32] of the series (3.1) is shown by the bold full curve in
figure 2. Because the magnetic field required to close the spin gap is equal to its zero-field
value, the series should be compared to the energy gap for a single flipped spin which is not
always equal to the boundary of the〈M〉 = 0 plateau (in this case shown by the dashed curve).
In the interval 1.1 < 1 6 1.5, this series slightly overshoots the finite-size data. In fact, the
same can be observed in earlier presentations [18, 32] and therefore probably is due not to a
finite-size effect but to missing higher-order terms in the series which could be quite important
since we are looking at a region close to the limits of validity of this series (1 > 1 should be
its region of convergence).

The fully magnetized state with〈M〉 = 1 gives rise to a further trivial plateau in figure 2.
The finite-size data for its boundary agree with the analytical result (3.8), as they should.

Let us summarize our results for the square lattice. Using systems of size up 4× 6 we are
able to locate the end of the zero-magnetization plateau at1c ≈ 0.87 which is a reasonable
approximation to the presumably exact value1 = 1. Furthermore, the first-order nature of
the transition is reflected in the fact that on a 4× 6 lattice size it is favourable to flip two spins
rather than one for1 > 1.325.

5. The triangular lattice, numerically

The triangular lattice was already studied some time ago by means of finite-system
diagonalizations [12]. Now we can access larger system sizes and look more carefully at



4704 A Honecker

0

2

4

6

8

10

12

14

1 1.5 2 2.5 3 3.5 4

h/J

∆

<M> = 1
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<M> = 4/9
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Figure 3. The magnetic phase diagram of the triangular-latticeXXZ antiferromagnet on a 3× 6
lattice. The thin full curves denote boundaries of areas with the values of the magnetization
indicated in the figure. The dashed curve is a single-spin excitation above the〈M〉 = 1/3 ground
state (see the text). The bold full curves show the series (3.5) and (3.7).

the dependence on1†. To obtain an overview, we first look at the 3× 6 lattice, even though
precisely this lattice was already studied in [12] for1 ∈ {0.8, 1, 1.2, 2.5, 5}. Figure 3 shows
our magnetic phase diagram for this case. The magnetization curves at1 = 1, 1.2 and 2.5
of [12] correspond to sections through figure 3 and are in all cases in excellent agreement with
our results.

Here we observe precisely one non-trivial plateau with〈M〉 = 1/3. Note that for1 > 2.4
it becomes favourable to flip two spins rather than one at the upper boundary of this plateau.
In this case, the energy of an excitation corresponding to a single spin flipped is shown by
a dashed curve while the finite-size data for transitions between different ground states are
shown by thin full curves. On the basis of our experience with the square lattice, we take this
as an indication that the transition at the upper boundary of this plateau becomes first order for
1 & 2 while all other transitions are second order.

The series (3.5) and (3.7) for the upperhc2 = E+(0, 0) and lower boundarieshc1 =
−E−(0, 0) of the 〈M〉 = 1/3 plateau are shown by bold full curves. The former should be
compared to the dashed curve, the latter to the appropriate thin full curve. The agreement is
good for the right-hand half of figure 3. Since here we have fewer orders for the series than
for the square lattice (figure 2), it is not surprising that the agreement in the region1 close to
one is less good. Again, the finite-size data for the location of the transition〈M〉 → 1 agree
exactly with (3.8).

Now we examine the region1 close to one in more detail. First, we present the magnet-
ization curve at1 = 1 in figure 4. The thin curves denote curves at three different system sizes.
Here, we have used results of [14] to obtain the parts with〈M〉 6 1/3 of the magnetization
curves withV = 27 andV = 36. Our results overlap with those of [14] just at the lower

† The current record for finite-system diagonalizations on this type of lattice seems to be held with a volume of 36
spins (see e.g. [14,34]). Since we want to vary the magnetization, wave vectors and1 and still limit the computational
effort, we content ourselves with smaller system sizes.
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5/6
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<M>

h/J

Figure 4. Magnetization curves of the spin-1/2 triangular-lattice Heisenberg antiferromagnet with
1 = 1 on 3× 6 (short dashes),V = 27 (long dashes) andV = 36 (thin full curve) lattices. The
curves with volumeV = 27 andV = 36 for 〈M〉 6 1/3 are based on data of [14]. The bold full
curve is an extrapolation to the thermodynamic limit (see the text).

boundary of the〈M〉 = 1/3 plateau at a volumeV = 27. However, our geometry is different
from that of [14]: in our computation theV = 27 lattice has a smallest spatial extent of just
three sites while the configuration of [14] was designed to maximize the distance between
boundaries. This leads to a difference of 2% between the results, which is reasonably small in
view of the small linear size.

In figure 4 one can clearly see a plateau with〈M〉 = 1/3. The finite-size effects for
its boundaries are small†. One observes that finite-size effects are also small for the mid-
points of the steps in these curves, as is well known from one dimension [26, 27]. Drawing
a curve through these points for the largest available system size (here we have used up to
V = 225= 15× 15 in the vicinity of the upper critical fieldhuc), we therefore obtain the
approximation to the thermodynamic limit shown by the bold full curve in figure 4.

Finally, in figure 5 we zoom in to the region1 around one of figure 3, also using bigger
system sizes‡ (figure 4 is a section at1 = 1 through figure 5). The main motivation for
taking a closer look at this region comes from the observation in [12] that the〈M〉 = 1/3
plateau is present at1 = 1, but does not seem to exist at1 = 0.8. Inspecting figure 5 and
paying attention to the finite-size effects (in particular the difference between the 3×6 and the
3× 9 lattice), one concludes that this plateau presumably disappears somewhere in the region
1 ≈ 0.85.

We have also indicated the location of the〈M〉 = 2/3 plateau which is only realized for the
3× 6 and the 6× 6 lattice. However, the finite-size data provide no indication that it survives
in the thermodynamic limit. So, it (and other possible plateaux) are likely to be absent in the
thermodynamic limit, as is implied by the bold full curve in figure 4.

† The first-order spin-wave results for the boundaries of the〈M〉 = 1/3 plateau,hc1 ≈ 1.248J andhc2 ≈ 2.145J [13],
are about 0.13J smaller than the finite-size diagonalization results.
‡ We have not computed all transition lines for the larger lattices sizes. We have omitted the ones for〈M〉 < 1/3 on
the 3× 9 lattice and those with〈M〉 < 2/3 on the 6× 6 lattice.
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Figure 5. The magnetic phase diagram of the triangular-latticeXXZ antiferromagnet on a 3× 6
(full curve), 3× 9 (long-dashed curve) and 6× 6 (short-dashed curve) lattice.

In figure 5 we have omitted the series (3.5) and (3.7), since in figure 3 one can already
observe notable deviations in this region of1. Of course, the result (3.8) is still valid.

6. Numerical diagonalization for the hexagonal lattice

While the square lattice is self-dual, the dual of the triangular lattice is the hexagonal lattice.
It is therefore interesting to also investigate the magnetization process on the hexagonal
lattice. Figure 6 shows the results of diagonalizations on a 4× 6 lattice. The region of
small magnetization looks qualitatively very similar to that of the square lattice in figure 2. In
particular, one can see an〈M〉 = 0 plateau (corresponding to the gap) for1 & 1. Inferring
from figure 6 that there is a first-order phase transition at the boundary of this plateau may
be speculative, but this should also be expected on the grounds of universality, i.e. in the
thermodynamic limit the transition at the boundary of the〈M〉 = 0 plateau for the hexagonal
lattice should be in the same universality class as that of the square lattice. The location of
the ending point of the〈M〉 = 0 plateau is compatible with1 = 1 (see also [33]) which
would be the same for the square lattice. While in general one cannot use arguments based on
universality to locate a critical point, here the point1 = 1 is distinguished by enhanced SU(2)
symmetry and one may therefore expect the closing of the gap exactly at1 = 1.

The tenth-order version of [33] of the series (3.2) is shown by the bold full curve in fig-
ure 6 and should be compared with the dashed curve. The agreement is quite good close to the
right-hand boundary of the figure and less good for smaller values of1. This is not surprising
since the series for the hexagonal lattice [33] clearly converges less well than that for the square
lattice [32].

As far as non-zero magnetizations are concerned, observe first that the transition to the
fully magnetized state does indeed take place at the value ofhuc given by (3.8), thus giving a
crosscheck on our computations. More important are the candidates for plateaux. In figure 6,
the only plausible value for the appearance of a non-trivial plateau is at〈M〉 = 1/2.
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Figure 6. As figure 2, but for the hexagonal lattice. The bold full curve shows the extension to
tenth order [33] of the series (3.2).

It should be noted that the geometry corresponding to figure 6 can be interpreted as a variant
of theN = 4-leg spin ladder, and here plateaux are expected at〈M〉 = 0 and〈M〉 = 1/2 [4,5].
So, in order to see whether the wide step in figure 6 at〈M〉 = 1/2 is an intrinsic feature of the
hexagonal lattice, one should look at other system sizes, and in particular larger strip widths.
Since the large computational effort makes a systematic investigation of the dependence on1

unfeasible, we have looked at the 6× 6 lattice for a few selected values of1. The finite-size
magnetization curves for1 = 1 in figure 7 are representative of the general case. In addition
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Figure 7. Magnetization curves of the hexagonal antiferromagnet with1 = 1. The finite-size data
are for 6× 6 (thin full curve), 4× 6 (long dashes) and 4× 4 (short dashes) lattices, respectively.
As in figure 4, the bold full curve is an extrapolation to infinite volume.
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to the data for the 4× 6 lattice, we also show here magnetization curves for the 4× 4 lattice
and 6× 6 lattice (close to saturation, some larger lattice sizes have also been considered, but
are not explicitly shown).

With the data for the 6× 6 lattice taken into account, there is no indication any longer
of an〈M〉 = 1/2 plateau. The bold full curve therefore shows an extrapolated magnetization
curve without plateaux, which as in figure 4 was obtained by connecting the mid-points of
the steps for the largest available system sizes. This extrapolated curve shows that the 4× 6
lattice is still subject to substantial finite-size effects which at〈M〉 = 1/2 combine to suggest
a plateau.

Also at1 = 2 there is no evidence either for a plateau with〈M〉 = 1/2 on a 6× 6 lattice
(note that here the corresponding candidate in figure 6 on a 4× 6 lattice is most pronounced).
Thus, the final picture for the hexagonal lattice is the same as for the square lattice, i.e. the
only plateau occurs for1 > 1 at〈M〉 = 0. The main qualitative difference between these two
lattice types is in the finite-size corrections which are much more important for the hexagonal
lattice.

7. The transition to saturation

Finally we look at the asymptotic behaviour of the magnetization as a function of the magnetic
field close to saturation. One possibility is that it reaches the upper critical fieldhuc following
a power law. Then one would introduce a critical exponentµ via

1− 〈M〉 ∼
(
huc − h
J

)µ
. (7.1)

A different possibility is a linear behaviour with a logarithmic correction:

1− 〈M〉 = a
(
huc − h
J

)
ln

(
bJ

huc − h
)
. (7.2)

The latter has been argued in [19] to apply to the square-lattice antiferromagnet (see also
[35,36]).

To determine the functional form and estimateµ, we use the mid-point of the last step
in the magnetization curve, as was done for the one-dimensional case e.g. in [37]. Since
the corresponding magnetization satisfies 1− 〈M〉 = 2/V , determination of the asymptotic
behaviour of the magnetization curve is equivalent to determining the asymptotic finite-size
behaviour of this last step. The particular choice of the mid-point of the step is not relevant for
the determination of the exponent (or more generally, the functional form). Any other choice
such as the last corner would simply yield a different prefactor. Values of such mid-points are
given in table 1 for all three lattice types at the isotropic point1 = 1.

Fitting these data for the square lattice to the form (7.1), we find a value ofµ in the region
µ ≈ 0.83. However, the precise value increases if we use larger system sizes for the fit, as
is expected to be the case in the presence of a logarithmic correction. Indeed, one obtains
a better fit if one uses (7.2) instead. Using all data points for the square lattice in table 1
we find a = 0.2505± 0.0015 andb = 2.148± 0.075 where the errors indicate the 1σ
confidence interval of the fit. So, the numerical data can be regarded as a confirmation of the
functional form (7.2) predicted by first-order spin-wave theory [19], though it is not surprising
that the values for the constants differ from the first-order spin-wave predictions [19] which,
specialized toS = 1/2, area = 1/(2π), b = π2. In no case do we reproduce the simple linear
behaviour reported in [17]. The crucial difference is probably not that we employ exclusively
system sizes which are larger than those used in [17], but that the analysis in this reference not
only assumed the form (7.1), but also that 1/µ is an integer.
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Table 1. The mid-point of the last step before the upper critical fieldhuc for two-dimensional
antiferromagnets at1 = 1.

Square lattice Triangular lattice Hexagonal lattice

V (huc − h)/J V (huc − h)/J V (huc − h)/J
8× 8 0.028767 6× 6 0.057168 8× 8 0.015650

10× 10 0.016407 9× 9 0.022087 10× 10 0.0089914
12× 12 0.010450 12× 12 0.0094961 12× 12 0.0057555
14× 14 0.0071704 15× 15 0.0054802 14× 14 0.0039638
16× 16 0.0051911 18× 18 0.0035220 16× 16 0.0028778
18× 18 0.0039129 21× 21 0.0024338 18× 18 0.0021741
20× 20 0.0030438 24× 24 0.0017719 20× 20 0.0016943
22× 22 0.0024282 27× 27 0.0013419 22× 22 0.0013540
24× 24 0.0019776 30× 30 0.0010480 24× 24 0.0011045
26× 26 0.0016386 33× 33 0.00083883 26× 26 0.00091571

In the case of the triangular lattice, one should first discard the data for the volumes
V = 6× 6 andV = 9× 9 in order to obtain a smooth curve. Then one again obtains the
same behaviour as for the square lattice: the exponentµ obtained by the fit (7.1) has a very
similar value and moves in the same direction with increasingV as for the square lattice.
Furthermore, one obtains a better fit with (7.2) than with (7.1). Thus we conclude that the
transition to saturation of the triangular lattice antiferromagnet also obeys (7.2), where the
constants are now given bya = 0.2991± 0.0012,b = 1.249± 0.030.

For the hexagonal lattice we can access the same system sizes as for the square lattice.
Thus, we can directly compare the values for the mid-points of the steps. One finds that those
for the hexagonal lattice differ from the ones for the square lattice by a factor which rapidly
approaches≈0.56 with increasing system size. This means that the transitions to saturation
of the square and hexagonal lattice should belong to the same universality class. Indeed, if we
perform the same analysis as for the square lattice, we find the same behaviour for the hexagonal
lattice. Just the constants for the fit (7.2) are different: now we havea = 0.4338± 0.0024,
b = 1.527± 0.052.

In summary, we find support for the asymptotic behaviour (7.2) in all of the cases that
we have considered. This universal behaviour can be understood in a way very similar
to the Dzhaparidze–Nersesyan–Pokrovsky–Talapov (DN–PT) universal square root in one
dimension [38, 39]. One starts from the single-particle excitations. At the transition field
one starts to fill the lowest band of magnetic excitations. Generically, the dispersion around
such a minimum is quadratic, e.g.E ∼ |Ek|2. Then one needs to know how many states are
available below this value of|Ek|. In one dimension, where the detailed nature of the excitations
does not matter, this number is proportional tok as long as one has an exclusion principle.
Equivalently, ford = 1 the number of states available below a given energyE is proportional
to
√
E. Since the magnetic fieldh acts as a chemical potential and the number of particles

corresponds to the deviation of〈M〉 from its critical value, this argument leads to the DN–PT
universality class in one dimension.

For hard-core bosons in two dimensions (which is the situation that we consider here),
interactions lead to a logarithmic correction to the naı̈ve dimensional analysis [35,36,40] (see
also chapter 6 of [41]) and thus to (7.2). Note however that this argument is independent of the
details of the model under consideration. The crucial ingredients are just that the fundamental
excitations are bosons with a quadratic dispersion around the minimum, subject to a repulsive
interaction.
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In three (and higher) dimensions we have Bose condensation. Therefore, the magnet-
ization curve of a hypercubic antiferromagnet ford > 3 should have a simple linear approach
to saturation [42]. Since this is the behaviour found for classical spins, the mean-field result
for µ is in some sense exact ford > 3. The effect of Bose condensation which lowersµ
substantially below the valued/2 can be observed clearly in numerical diagonalization of the
isotropic (hyper)cubic antiferromagnet (compare table 2). In fact, if we fit the data in table 2
to the form (7.1), we findµ ≈ 0.95 for d = 3 andµ ≈ 0.98 for d = 4. Given the small
linear extent of the systems considered, this is in reasonable agreement with the predicted
valueµ = 1 without logarithmic corrections.

Table 2. The mid-point of the last step before the transition to saturation for the cubic andd = 4
hypercubic antiferromagnets at1 = 1.

d = 3 d = 4

V (huc − h)/J V (huc − h)/J
43 0.064954 44 0.022792
63 0.017227 64 0.0043387
83 0.0068532 84 0.0013508

103 0.0033871 104 0.00054895
123 0.0019148
143 0.0011859
163 0.00078466
183 0.00054581

Different values forµ can be obtained if the form of the dispersion close to the minimum
is not quadratic. For example, for special values of parameters one could haveE ∼ |Ek|4
which for d = 1 leads toµ = 1/4. The valueµ = 1/4 has been observed in the two-
leg zigzag ladder [43] and the biquadratic spin-1 chain [44], each with a special value of the
coupling constant. This is indeed explained by the aforementioned change in the single-particle
dispersion (see [45] and [46], respectively).

8. Discussion and conclusions

In the present paper we have observed the following plateaux in magnetization curves. For the
square and the hexagonal lattice, i.e. the two bipartite lattices, we find an〈M〉 = 0 plateau for
1 > 1. The transition at the boundary of this plateau is likely to be always of first order. On
the triangular lattice one finds a plateau with〈M〉 = 1/3 for1 & 0.85. The transitions at its
boundary appear to be second order for small enough anisotropies (at least for1 . 2).

Recently, plateaux with〈M〉 = 1/2 (and also〈M〉 = 0) have been observed on the
triangular lattice with multi-spin interaction, in particular a four-spin interaction in addition
to the two-spin interaction discussed in the present paper [47, 48]. At least the〈M〉 = 1/2
plateau survives even the classical limit [49]†. This is to be contrasted with the〈M〉 = 1/3
plateau in the triangular-lattice antiferromagnet which is absent in the classical limit and arises
only in first-order spin-wave theory [13].

While all of the aforementioned plateaux with〈M〉 6= 0 occur in frustrated systems,
frustration is certainly not a necessary ingredient for the appearance of non-trivial plateaux.
Consider for example a spin-1/2N -layer square-lattice Heisenberg antiferromagnet (see [20]

† In addition, a plateau with〈M〉 = 1/3 can also be observed in the classical model for a suitable choice of
parameters [49].
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for a detailed discussion of the bilayer system in a magnetic field). In the limit where the
in-plane coupling tends to zero, this system decouples into clusters ofN spins. Simply by
counting the possible states of these clusters, we conclude that plateaux exist with〈M〉 = −1,
−1 + 2/N , . . ., 1− 2/N , 1 at least if the inter-plane coupling is much larger than the in-plane
coupling [4, 5, 8]. However, frustration appears to favour the appearance of further plateaux.
Therefore, a bilayer triangular lattice may be an interesting subject for further study.

The triangular and hexagonal lattices are dual to each other and thus share the same (local)
point symmetry. However, we have seen that an antiferromagnet in a magnetic field behaves
very differently on them. The point-symmetry group therefore does not appear to be of any
relevance to the magnetization process. On the other hand, the square and hexagonal lattices
share the property of being bipartite lattices and this in fact gives rise to very similar behaviour
in the presence of a magnetic field.

In the classical or Ising limit, it is clear that the appearance of plateaux is related to the
number of sublattices needed to describe the full magnetization process. It is therefore likely
that some kind of translationally invariant unit cell will control the appearance of plateaux also
in higher dimensions. The definition of such a unit cell in two dimensions is nevertheless far less
obvious than in one dimension, and some ambiguity is also possible. To elucidate the situation
further, it would be useful to study a wider range of models and lattice types. An important
class of lattice types would be given by the eleven Archimedean tilings (see e.g. chapter 2
of [50]) among which we have considered the three monohedral ones. In particular, it would
be interesting to investigate the magnetization process of theS = 1/2 Heisenberg model on
the Kagoḿe lattice, where attention has so far been concentrated on the low-lying excitation
spectrum (see [51] and references therein).

In a final part, we have numerically computed the asymptotic behaviour of the mag-
netization curve close to the transition to saturation. The fundamental excitations assoc-
iated with this transition are hard-core bosons and one therefore finds a universal behaviour:
the characteristic DN–PT square root in one dimension [38, 39], a linear behaviour with a
logarithmic correction in two dimensions [19, 35, 36] and a simple linear behaviour in three
and more dimensions [42]. This issue was studied for the transition to saturation because the
diagonalization simplifies considerably in this limit. In particular, one can explicitly map the
problem to a low-density gas of hard-core bosons. In one dimension, where the nature of the
excitations is not really important, almost all second-order transitions at plateau boundaries
are in the DN–PT universality class. So, presumably the universality class observed at the
transition to saturation is also more general in higher dimensions. However, there is also
room for different behaviour since now the natures of the fundamental excitations and the
interactions are more important.
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